
E-Payment Systems and
Cryptocurrency Technologies

Spring Semester, 2021

https://course.ie.cuhk.edu.hk/~ftec4004

Prof. Wing C. Lau
wclau@ie.cuhk.edu.hk

http://www.ie.cuhk.edu.hk/~wclau

Introduction to
Smart Contract and Ethereum

Acknowledgements
! The slides used in this lecture are mostly adapted from the following

sources. The copyrights and contribution of the original authors are hereby
acknowledged and recognized:
! Sherman S.M. Chow, IERG5590 Advanced Blockchain, CUHK, 2020.
! Andrew Miller, ECE398 SC: Smart Contracts Security and Blockchain Security,

UIUC, Spring 2018.
! Andreas Antonopoulos, Gavin Wood, Mastering Ethereum – Building Smart

Contracts and DApps, Publisher: O’Reilly, Dec 2018.
! Loi Luu, Ethereum and Smart Contracts, Winter School on Cryptocurrency and

Blockchain Technologies, Shanghai, Jan 2017.
! Foteini Baldimtsi, CS795 Blockchain Technologies, George Mason University,

2017, http://www.baldimtsi.com/teaching/cs795_sp17
! Andrew Miller, ECE/CS 598AM: Cryptocurrency Security, UIUC, Fall 2016.
! A. Narayanan, J. Bonneau, E.W. Felten, A. Miller, S. Goldfeder, J. Clark, Bitcoin

and Cryptocurrency Technologies, Princeton Press, July 2016
http://bitcoinbook.cs.princeton.edu

! Stefan Dziembowski, University of Warsaw,
https://www.crypto.edu.pl/dziembowski-talks
! ©2016 by Stefan Dziembowski. Permission to make digital or hard copies of part or all

of this material is currently granted without fee provided that copies are made only for
personal or classroom use, are not distributed for profit or commercial advantage, and
that new copies bear this notice and the full citation.

http://www.baldimtsi.com/teaching/cs795_sp17
https://www.crypto.edu.pl/dziembowski-talks

Account Balances

Decentralized Consensus
“Blockchain”

Alice: ฿10
Bob: ฿15
Carol: ฿120

Digital currency is just one application on
top of a blockchain

Users
Money

Contracts

Code

Storage

Data

Users
Money

Smart Contracts: user-defined programs running on
top of a blockchain

Decentralized Consensus
“Blockchain”

Definition:

A Smart Contract is a computer program executed in a
secure environment that directly controls digital assets

Bitcoin transaction syntax

From the previous lecture -- “standard” transactions:

T2 = (User P1 sends 1 BTC from T1 to P2 signature of P1 on [T2])

T3 = (User P2 sends 1 BTC from T2 to P3 signature of P2 on [T3])

P2

P3

Strange transactions:

T2 = (User P1 sends 1 BTC from T1 to P2 signature of P1 on [T2])

T3 = (User P2 sends 1 BTC from T2 to P3 signature of P2 on [T3])

P2

P3

T2 = a condition C2 to spend T2 a “witness W2”

T3 = a “witness W3”

P2

P3

T1 1 BTC

T2 1 BTC a condition C3 to spend T3

a Boolean function

Standard transactions:

Example: “Alice gives 1 BTC to the Bob if he
factors 2501.”

T2 =

can be spent using Bob’s
signature and p and q

such that p,q > 1
and pq = 2501

Alice’s
signature

T1
1

BTC

T3 = can be spent using
Bob’s signature

p=41
q=61
Bob’s

signature
on [T3]

T2
1

BTC

Alice posts:

T1 --- earlier transaction that can be spent by Alice

Bob claims the
money by posting:

aka:
T3 redeems T2

formally:
C([T],(p,q,)) = true iff

p,q>1 & pq=2501
and is Bob’s signature on [T]

Redeeming condition

T3 redeems T2 if
C2 evaluates to true on input ([T3],W3).

Note: in the the standard transactions:
C2([T3],W3) = Vrfy(pk2,[T3],W3)

[T3]

T2 = a condition C2 to spend T2 a “witness W2”

T3 = a “witness W3”

P2

P3

T1 1 BTC

T2 1 BTC a condition C3 to spend T2

How are the conditions written?

In Bitcoin scripting language for
its Strange Transactions
(non-Turing complete stack-based)

Example:
OP_DUP OP_HASH160
02192cfd7508be5c2e6ce9f1b6312b7f268476d2
OP_EQUALVERIFY OP_CHECKSIG

Bitcoin contracts
The “Strange transactions” can be used to create the “Bitcoin
contracts”.

Simple examples:

• Payment channels
Pay money to anyone who knows some password.

• Assurance contracts.
Put a “deposit” to prove you are not a spammer.
Pay money only if some event happens (may require an oracle).

More advanced examples:
• ‘’Decentralized organizations”
• Secure multiparty computation protocols [Andrychowicz, D.,

Malinowski, Mazurek, 2014, Bentov and Kumaresan 2014].

Contracts

Code

Storage

Data

Users
Money

Smart Contracts: user-defined programs running on top
of a blockchain

Decentralized Consensus
“Blockchain”

Definition:

A Smart Contract is a computer program executed in a secure
environment that directly controls digital assets

History of “Smart contracts”:
conceptualized by Szabo in 1994

A smart contract is a computerized transaction protocol that
executes the terms of a contract. The general objectives are to
satisfy common contractual conditions (such as payment terms,
liens, confidentiality, and even enforcement), minimize exceptions
both malicious and accidental, and minimize the need for trusted
intermediaries. Related economic goals include lowering fraud loss,
arbitrations and enforcement costs, and other transaction costs.

-Nick Szabo “The Idea of Smart Contracts”

A Concise and General Definition of
Smart Contract

A smart contract is a computer program executed in a
secure environment that directly controls digital assets

14

A Concise and General Definition of
Smart Contract (cont’d)

A smart contract is a computer program executed in a
secure environment that directly controls digital assets

15

A Concise and General Definition of
Smart Contract (cont’d)

A computer program is a collection of instructions that
performs a specific task when executed by a computer. A
computer requires programs to function, and typically
executes the program's instructions in a central processing
unit.

Wikipedia

16

https://en.wikipedia.org/wiki/Computer_program

Example: Bet on an event

if HAS_EVENT_X_HAPPENED() is true:

send(party_A, 1000)

else:

send(party_B, 1000)

17

A Concise and General Definition of
Smart Contract (cont’d)

A smart contract is a computer program executed in a
secure environment that directly controls digital assets

18

Properties of Secure Environments

• Correctness of execution
• The execution is done correctly, is not tampered

• Integrity of code and data
• Optional properties

• Confidentiality of code and data
• Verifiability of execution
• Availability for the programs running inside

19

Examples of Secure Environments

• Servers run by Trusted Parties
• Decentralized computer network (i.e. Blockchains)
• Quasi-decentralized computer network (i.e. Consortium

(permission-based) Blockchains)
• Servers secured by trusted hardware (e.g. SGX)

20

A Concise and General Definition of
Smart Contract (cont’d)

A smart contract is a computer program executed in a
secure environment that directly controls digital assets

21

Example

• Legal contract: “I promise to send you $100 if my
lecture is rated 1*”

• Smart contract: “I send $100 into a computer program
executed in a secure environment which sends $100 to
you if the rating of my lecture is 1*, otherwise it
eventually sends $100 back to me”

22

A Concise and General Definition of
Smart Contract (cont’d)

A smart contract is a computer program executed in a
secure environment that directly controls digital assets

23

What are Digital Assets?

• A broad category
• Domain name
• Website
• E-Money
• Anything Tokenizable (e.g. Gold, Silver, Stock share etc)
• Game items
• Network bandwidth
• Computation cycles
• …

24

Smart Contract-based Application, an Example:
Escrow Service for Exchange

25

Another Application Example of Smart Contract:
Multi-Signature

26

• Require M out of N “owners” to agree for a particular
Digital Asset to be transferred:

• Intra-organizational Use Cases
• Make sense even for some Use Cases involved only 1 single

Individual, e.g.
• Two-Factor Authentication
• Two private Signing Keys stored in different storage media/ system…

A lot of other Interesting Applications of Smart
Contracts

• Individual/intra-organizational
• Complex access policies depending on amount, withdrawal

limits, etc
• Dead man’s switch, “digital will”

• e.g., When the owner dies, transfer all assets to someone
• General

• Prediction markets
• Insurance
• Micro-payments for computational services (file storage,

bandwidth, computation, etc)
• Games Puzzles with Incentives

• Gambling and Decentraized Casinos

27

General Theme of these Applications:
Decentralized Exchange

• Permissionless Blockchain => Decentralization
=> Democratization ??

• Democratization access to Financial Services
• How do you buy/sell Foreign Currencies now ?
• How “Sharing Economy Applications” (SEA) works ?

• Airbnb, Zipcar, Uber
• Decentralized Exchange can provide the platform for

“SEA”
• People exchange goods/services/assets among themselves

over a decentralized platform, i.e. a Blockchain, instead of via
a dealer or centralized authorities.

28

29

Also see: The Web3.0 idea proposed by Gavin Wood (co-founder of Ethereum)
https://gavwood.com/dappsweb3.html ; https://gavwood.com/web3lt.html
https://medium.com/@gavofyork/why-we-need-web-3-0-5da4f2bf95ab

Another Example (Idea): QueenBee:
Decentralized Search on Decentralized Web

https://gavwood.com/dappsweb3.html

Why are they called “Smart” Contracts ?

30

• Automated processing
• Facilitate, Verify and/or Enforce the Execution of a

contract

• Trust reduction
• Trust the Secure Execution Environments, not depending

on a very large number of Contract Enforcement
mechanisms

• Trackable and Irreversible
• Unambiguous, terms clearly expressed in code

• Question: how to express terms clearly in code?

Smart Contracts vs Legal Contracts

31

Legal Smart

Specification Natural language +
“legalese”

Code

Identity & Consent Signatures Digital signatures

Dispute resolution Judges, Arbitrators Decentralized
platform

Nullification By Judges ????

Payment Carried out by parties
separately

Built-in

Escrow Trusted third party,
settled in $

Built-in

Smart Contracts vs Legal Contracts
• A smart contract is more like a vending machine

• Follow predetermined rules

Legal contracts Smart contracts
Good at subjective (i.e.
requiring human
judgement) claims

Good at objective (i.e.
mathematically evaluable)
claims

High cost Low cost

May require long legal
process

Fast and automated

Relies on penalties Relies on collateral/security
deposits

Jurisdiction-bound Potentially International
32

Smart Contracts vs Legal Contracts

• Smart contracts are not very effective for loans
• Has the capital to provide liquid collateral for a loan, do not

need the loan in the first place
• Can use illiquid collateral though (eg. domain names)

• Legal contracts are not very effective for the anti-spam use case
• Amounts at stake are so small
• Spammers can locate themselves in favorable jurisdictions

and evade detection

33

Ethereum:
The First Blockchain-based

Smart Contract Platform

Ethereum

• Blockchain with expressive programming
language
– Programming language makes it ideal for smart

contracts
• Why? (back then, circa 2016)

– Most public blockchains are cryptocurrencies
• Mainly designed for transferring coins between

users
– Smart contracts enable much more applications

35

About Ethereum

Crowdfunded ~$20M in ~ a month
Popularized a grand vision of

“generalized” cryptocurrency

Flexible scripting language
“pyethereum” simulator, 2014

Co-founder of Ethereum:
Vitaly Dmitriyevich “Vitalik” Buterin

Analogy: Most existing blockchain
protocols were designed like

OR THIS

37

Why not make a protocol that works like

OR THIS OR THIS

38

Ethereum Languages

Ethereum VM (EVM)
Bytecode

Stack-oriented
Language

Lower-Level
Language

Serpent
(Deprecated) Solidity

Looks like scheme
(functional, macros)

Looks like Javascript,
(Types, Invariants)Looks like python

Looks like Forth.
Defined in the Yellowpaper
http://gavwood.com/paper.p
df

Source: Andrew Miller 39

Vyper
(Upcoming)

http://gavwood.com/paper.pdf

The Solidity Language

● Currently the most common (default) language used for Ethereum
Smart Contract Programming

● Syntax looks like JavaScript
● Contracts look like classes/objects
● Static typing

○ Most types can be cast e.g. bool(x)
● bool, uint8, uint16, ... uint256, int8, ... int256
● address
● string
● byte[]
● mapping(keyType => valueType)

Solidity Contract programming model

- Contract class
Create an object of

this class by making a
transaction

- Define functions you can
call

Workflow

42

60606040526040516102503
80380610250833981016040
528........

PUSH 60
PUSH 40
MSTORE
PUSH 0
CALLDATALOAD

.....What you write

What other see on
the blockchain

What people get from
the disassembler

How Ethereum Works

• Two types of account:
– Normal account like in Bitcoin,

• aka Externally Owned Account (EOA)
• has balance and address

– Smart Contract account
• like an object: containing (i) code, and (ii) private storage

(key-value storage)
• Code can

– Send ETH to other accounts
– Read/write storage
– Call (ie. start execution in) other contracts

43

Ethereum’s Account-based Model
vs. Bitcoin’s UTXO Model

44

DNS: The “Hello World” of Ethereum

data domains[](owner, ip)

def register(domainname):
if not self.domains[domainname].owner:

self.domains[domainname].owner = msg.sender

def set_ip(domainname, ip):
if self.domains[domainname].owner ==

msg.sender:
self.domains[domainname].ip = ip

Private
Storage

Can be invoked by
other accounts

45

Transactions in Ethereum

• Normal transactions like Bitcoin transactions
– Send tokens between accounts

• Transactions to contracts
– like function calls to objects
– specify which object you are talking to, which function,

and what data (if possible)

• Transactions to create contracts

46

Transactions

• nonce (anti-replay-attack)
• to (destination address)
• value (amount of ETH to send)
• data (readable by contract code)
• gasprice (amount of ether per unit gas)
• startgas (maximum gas consumable)
• v, r, s (ECDSA signature values)

47

How to Create a Contract?

• Submit a transaction to the blockchain
– nonce: previous nonce + 1
– to: empty
– value: value sent to the new contract
– data: contains the code of the contract
– gasprice (amount of Ether (ETH) per unit gas)
– startgas (maximum gas consumable)
– v, r, s (ECDSA signature values)

• If tx is successful
– Returns the address of the new contract (derived from

Creator Address and nonce)

48

How to Interact With a Contract?

• Submit a transaction to the blockchain
– nonce: previous nonce + 1
– to: contract address
– value: value sent to the new contract
– data: data supposed to be read by the contract
– gasprice (amount of ether per unit gas)
– startgas (maximum gas consumable)
– v, r, s (ECDSA signature values)

• If tx is successful
– Returns outputs from the contract (if applicable)

49

Blockchain State

Address Balance (BTC)

0x123456… 10

0x1a2b3f… 1.0

0xab123d… 1.1

Ethereum’s state consists of
key value mapping addresses
to account objects

Address Object

0x123456… X

0x1a2b3f… Y

0xab123d… Z

Bitcoin’s state consists of key
value mapping addresses to
account balance

50Blockchain != Blockchain State

Account Object

• Every account object contains 4
pieces of data:
– Nonce

• If the account is an Externally
Owned Account, this number
represents the number of
transactions sent from the
account’s address. If the
account is a contract account,
the nonce is the number of
contracts created by the
account.

– Balance
– Code hash (code = empty string

for normal accounts)
– Storage trie root 51

Data-structure of the Ethereum Blockchain

Source: https://ethereum.stackexchange.com/questions/268/ethereum-block-architecture

Data-structure of the Ethereum Blockchain

Source: https://ethereum.stackexchange.com/questions/268/ethereum-block-architecture

Tx-nTx-1

Block Mining

Miners

Tx-2

Block

A set of TXs

Previous block

New State Root

Receipt Root

Nonce

SHA3(Block) < D Broadcast
Block

54

Verify transactions &
execute all code to

update the state

Code execution

• Every (full) node on the blockchain processes every
transaction and stores the entire state

P6

P5

P4

P3

P2

P1

This is a new
block!

I’m a leader

This is a new
block!

This is a new
block!This is a new

block!

This is a new
block!

This is a new
block! 55

Data-structure of the Ethereum Blockchain

Source: https://ethereum.stackexchange.com/questions/268/ethereum-block-architecture

Architecture of the
Ethereum Virtual
Machine (EVM)
and its Code
Execution Context

DoS Attack Vector

• The “Halting Problem”
– Cannot tell whether or not a program will run infinitely

• A malicious miner can DoS attack full nodes by
including lots of computation in their txs

• Full nodes attacked when verifying the block

uint i = 1;
while (i++ > 0) {

donothing();
}

58

Solution: “Gas”

• Charge fee per
computational step
(“gas”)
– Special gas fees for

operations that take up
storage

59

Gas in Ethereum is a necessary evil

● All miners and full nodes must evaluate all transactions
○ limit computation cost

● All miners must store all state
○ limit storage use

● Short-cut the halting problem
○ There is an upper GAS_LIMIT, so all programs will halt

Sender has to pay for the gas

• gasprice: amount of Ether (ETH) per unit gas
• startgas: maximum gas consumable

– If startgas is less than needed
• Out of gas exception, revert the state as if the TX has never

happened BUT this failed TX will still be recorded in the
Ethereum blockchain

• Sender still pays all the gas

• TX fee = gasprice * consumedgas
• Gas limit: similar to block size limit in Bitcoin

– Total gas spent by all transactions in a block < Gas Limit

61

All transactions specify START_GAS, GAS_PRICE

1. If START_GAS ⨉ GAS_PRICE > caller.balance, halt
2. Deduct START_GAS ⨉ GAS_PRICE from caller.balance
3. Set GAS = START_GAS
4. Run code, deducting from GAS
5. For negative values, add to GAS_REFUND

a. GAS only decreases
6. After termination, add GAS_REFUND to caller.balance

Back of envelope numbers
a Solidity programmer should know

Average gas price (as of March ‘18): https://etherscan.io/chart/gasprice

http://ethgasstation.info/

~20gigawei = 0.00000002 ether

Price of Ether (as of March ‘18):

~$500 per Ether

Cost per transaction:
21000 gas “base” for a transaction = $0.21 (21 cents per transaction)

Cost of data:
~75 gas per byte of data stored = $0.77/kB (77 cents per kilobyte)

Gas limit per block: 4,000,000 ⇒ 53 kilobytes per block (2.66MB per 10 min)

https://etherscan.io/chart/gasprice
http://ethgasstation.info/

http://ethgasstation.info/

http://ethgasstation.info/

Polite contracts call revert on errors

uint8 numCandidates;
uint32 votingFee;
mapping(address => bool) hasVoted;
mapping(uint8 => uint32) numVotes;

/// Cast a vote for a designated candidate
function castVote(uint8 candidate) {

if (msg.value < votingFee)
return;

if (hasVoted[msg.sender])
revert();

hasVoted[msg.sender] = true;
numVotes[candidate] += 1;

}

revert() ensures no effects persisted
except gas consumption

Out-of-gas exceptions are bad news

● State reverts to previous value
○ Except that START_GAS * GAS_PRICE is still deducted

Built-in support for calling other contracts

● a.transfer(x) sends x to address a
○ returns 0 if this fails due to call stack

● foo.call.value(3).gas(20764)(bytes4(sha3("bar()")));
○ also callcode, delegatecall
○ default is 0 value, all available gas

● new constructor deploys a new contract
○ Careful, it’s expensive!

Remember:
Smart contracts code is fixed forever.
Calls required to update functionality

Built-in support for calling other contracts (cont’d)

- Contract member variables if public, automatically defines a
“getter”

- Modifiers payable, constant, returns(), also modifiers can be user defined

- Macros / Internal Functions internal modifier -> does not require a
“message”

- Type conversions int(x), uint256(x), bool(x)

- Structs, arrays, mappings, memory vs storage

array: int[2] x; hashmap mapping (int[2] => int);

- Throwing exceptions throw; // exceptions

contain no data

- Units (currency: “eth”, “wei”, etc.) 3 * (2 eth)

5

Callers can choose how much gas to send

A:
function a():

Assert msg.gas == 100;
x = B.b.gas(10)()
return x + “ World!”

B:
function b() {
assert msg.gas == 10
y = C.c.gas(5)()

require(y == 0);
// out of gas

return “Hello”

C:
function c():
assert msg.gas == 5
while (true) {

Loop
}

return “Bonjour”Out of gas
“Hello”

100
10

“Hello World!”

(pseudocode: exact syntax used here does not work in Solidity)

Economics of gas are similar to transaction fees

● Miners choose transactions based on GAS_PRICE

● In theory, they should not care which opcodes are used
○ In practice, some “overpriced” opcodes may be preferred

● Maximum gas limit per block
○ Miners can slowly raise it, each block votes

References for Solidity syntax

- Storage and stateful methods
public instance variables, public methods
constant, pure, view methods

https://solidity.readthedocs.io/en/v0.4.21/contracts.html#functions
https://solidity.readthedocs.io/en/v0.4.21/contracts.html#visibility-and-getters

- Control flow, for loops and if statements
https://solidity.readthedocs.io/en/v0.4.21/control-structures.html#control-structures

https://solidity.readthedocs.io/en/v0.4.21/contracts.html%23functions
https://solidity.readthedocs.io/en/v0.4.21/contracts.html%23visibility-and-getters
https://solidity.readthedocs.io/en/v0.4.21/control-structures.html%23control-structures

- Events and printf debugging
event Debug(string); … emit Debug(“fail at point A”)

https://solidity.readthedocs.io/en/v0.4.21/contracts.html#events

Debugging strategies:
1. Use Log Events
2. Use pure functions
3. Use the Remix debugger

References for Solidity syntax (cont’d)

https://solidity.readthedocs.io/en/v0.4.21/contracts.html%23events

- Declaring variables and conversion between types
https://solidity.readthedocs.io/en/v0.4.21/types.html#value-types
https://solidity.readthedocs.io/en/v0.4.21/types.html#conversions-between-elementary-types

- Integers can overflow https://github.com/OpenZeppelin/zeppelin-
solidity/blob/master/contracts/math/SafeMath.sol

- Mappings
mapping (address => bool) hasAlreadyVoted;

https://solidity.readthedocs.io/en/v0.4.21/types.html#mappings

References for Solidity syntax (cont’d)

https://solidity.readthedocs.io/en/v0.4.21/types.html%23value-types
https://solidity.readthedocs.io/en/v0.4.21/types.html%23conversions-between-elementary-types
https://github.com/OpenZeppelin/zeppelin-solidity/blob/master/contracts/math/SafeMath.sol
https://solidity.readthedocs.io/en/v0.4.21/types.html%23mappings

Clever implementation of maps in Solidity

mapping(string => uint256) balances;
Alice 15

Bob 15

Joe 100

0 2256

H(“balances”|”Bob”) H(“balances”|”Joe”) H(“balances”|”Alice”)

15 15100

● Every item requires at least one 256-bit word
● Balances[“Andrew”] is 0 if “Andrew” doesn’t exist or if “Andrew” has 0 balance
● To delete a key, set balances[“Andrew’] = 0
● Cannot delete an entire map!

- Payable and transferring currency
address x; x.transfer(msg.value)

https://solidity.readthedocs.io/en/v0.4.21/types.html#address
https://solidity.readthedocs.io/en/v0.4.21/units-and-global-variables.html#address-related

- Arrays in storage and in memory
https://solidity.readthedocs.io/en/v0.4.21/types.html#reference-types
https://solidity.readthedocs.io/en/v0.4.21/types.html#arrays

References for Solidity syntax (cont’d)

https://solidity.readthedocs.io/en/v0.4.21/types.html%23address
https://solidity.readthedocs.io/en/v0.4.21/units-and-global-variables.html%23address-related
https://solidity.readthedocs.io/en/v0.4.21/types.html%23reference-types
https://solidity.readthedocs.io/en/v0.4.21/types.html%23arrays

- Calling methods of other contracts, the Gas model
Tx.gas, gasLeft()

https://solidity.readthedocs.io/en/v0.4.21/units-and-global-variables.html#special-variables-and-functions

- Extern / abstract contracts
https://solidity.readthedocs.io/en/v0.4.21/contracts.html#abstract-contracts

- Access controls
msg.sender, tx.origin

https://solidity.readthedocs.io/en/v0.4.21/common-patterns.html?highlight=payable#restricting-access

References for Solidity syntax (cont’d)

https://solidity.readthedocs.io/en/v0.4.21/units-and-global-variables.html%23special-variables-and-functions
https://solidity.readthedocs.io/en/v0.4.21/contracts.html%23abstract-contracts
https://solidity.readthedocs.io/en/v0.4.21/common-patterns.html?highlight=payable%23restricting-access

Solidity gotchas (Many more !!)

● Member variables can be marked public
○ Getter methods automatically provided

● Functions must be marked payable to accept funds
● Member variables go to storage by default

○ Method variables go to memory
● Fallback function()

○ Called if no function specified (e.g. send)
○ Called if non-existent function called

● msg.sender vs. tx.origin

https://solidity.readthedocs.io/en/develop/solidity-in-depth.html

https://solidity.readthedocs.io/en/develop/solidity-in-depth.html

An Example:
Namecoin in Ethereum

What is the Domain Name System?

“Namecoin”: a simplistic DNS replacement
Initially, all names are unregistered.

Anyone can claim an unregistered name.

Once it’s registered, no one can change it.

Namecoin pseudocode

def register(k, v):

if !self.storage[k]: # Is the key not yet taken?

Then take it!

self.storage[k] = v

return(1)

else:

return(0) // Otherwise do nothing

Key challenges in Smart Contract
Design and Implementation:

● Smart contracts on public blockchains can be
trusted for correctness and availability,
but not privacy (yet)

● Blockchain resources are expensive
● On the blockchain, “Code is law”
**Uncertain delays, Race conditions (e.g. Front
Running), Temporary Forks, …
**Obscure and counterintuitive VM rules
=> ** can be (and have been) exploited to cause
Smart Contract “Security” vulnerabilities which
resulted in substantial monetary losses !

• Due to abstraction of semantic
– Transaction ordering dependence
– Reentrancy bug

• Which exploited the DAO

• Obscure VM rules
– Maximum stack depth is 1024: not many devs know
– Inconsistent Exception Handling in EVM

84

Some Security Flaws
(Many more a Solidity Programmer needs to know !)

For details, refer to:
https://dasp.co
https://www.cryptocompare.com/coins/guides/the-dao-the-hack-the-soft-fork-and-the-hard-fork/

http://www.comp.nus.edu.sg/~loiluu/papers/oyente.pdf
http://hackingdistributed.com/2016/07/13/reentrancy-woes/

85

The Reentrancy Bug which stole 3.5M ETH from DAO ;
Led to a Hard Fork and Split of Ethereum blockchain

[Ethereum Classic (ETC) was born] (circa June-July 2016)

For details, refer to:
https://dasp.co
https://www.cryptocompare.com/coins/guides/the-dao-the-hack-the-soft-fork-and-the-hard-fork/

• Create developer tools
– Smart contract analyser based on symbolic exec: Oyente
– Testing and deployment framework: truffle
– Formal verification for smart contracts: eth-isabelle, why3

• Design better semantic [CCS’16]
• Educate users
• Idea

– Create security certificates for smart contracts?

86

Ongoing Efforts to mitigate Security Flaws

https://github.com/ethereum/oyente
https://github.com/ConsenSys/truffle
https://github.com/pirapira/eth-isabelle
https://forum.ethereum.org/discussion/3779/formal-verification-for-solidity-contracts

A Popular and Serious Application of
Ethereum Smart Contracts:

Initial Coin Offering (ICO)

ERC20 Tokens

https://medium.com/@jgm.orinoco/understanding-erc-20-token-contracts-a809a7310aa5

§ A Token Contract is a smart contract that contains a map of
account address and their balances

Ø The balance represents a value that is defined by the contract creator,
e.g. the value may represent physical objects, another monetary value
or the holder’s reputation.

Ø This balance is commonly called a token.

§ ERC-20 defines a common set of
features and interfaces for
Token Contracts in Ethereum

NB: ERC = Ethereum Request for Comments

ERC20 defines interfaces for basic token behavior

Basic functionality:

function totalSupply() constant returns (uint256 totalSupply)

function balanceOf(address _owner) constant returns (uint256 balance)

Delegating control:

function transfer(address _to, uint256 _value) returns (bool success)

function transferFrom(address _from, address _to, uint256 _value) returns (bool success)

Delegating control:

function approve(address _spender, uint256 _value) returns (bool success)

function allowance(address _owner, address _spender) constant returns (uint256

remaining)

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

Refer to:
https://github.com/ethereumbook/ethereumbook/blob/develop/10tokens.asciidoc
for more details

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereumbook/ethereumbook/blob/develop/10tokens.asciidoc

Two-Step Approve & TransferFrom Workflow of
Initial Coin Offering (ICO) of an ERC20 Token

https://github.com/ethereumbook/ethereumbook/blob/develop/10tokens.asciidoc

Two-Step Approve & TransferFrom Workflow of
Initial Coin Offering (ICO) of an ERC20 Token (cont’d)

https://github.com/ethereumbook/ethereumbook/blob/develop/10tokens.asciidoc

For the approve & transferFrom workflow, two transactions are needed. Let’s say that Alice
wants to allow the AliceICO contract to sell 50% of all the AliceCoin tokens to buyers like Bob
and Charlie. First, Alice launches the AliceCoin ERC20 contract, issuing all the AliceCoin to
her own address. Then, Alice launches the AliceICO contract that can sell tokens for ether.
Next, Alice initiates the approve & transferFrom workflow. She sends a transaction to the
AliceCoin contract, calling approve with the address of the AliceICO contract and 50% of the
totalSupply as arguments. This will trigger the Approval event. Now, the AliceICO contract can
sell AliceCoin.

When the AliceICO contract receives ether from Bob, it needs to send some AliceCoin to Bob
in return. Within the AliceICO contract is an exchange rate between AliceCoin and ether. The
exchange rate that Alice set when she created the AliceICO contract determines how many
tokens Bob will receive for the amount of ether sent to the AliceICO contract. When the
AliceICO contract calls the AliceCoin transferFrom function, it sets Alice’s address as the
sender and Bob’s address as the recipient, and uses the exchange rate to determine how
many AliceCoin tokens will be transferred to Bob in the value field. The AliceCoin contract
transfers the balance from Alice’s address to Bob’s address and triggers a Transfer event.
The AliceICO contract can call transferFrom an unlimited number of times, as long as it
doesn’t exceed the approval limit Alice set. The AliceICO contract can keep track of how
many AliceCoin tokens it can sell by calling the allowance function.

https://elementus.io/token-sales-history

https://elementus.io/token-sales-history

Lifecycle of an ICO Pre-launch Token

Presale / private investment

Whitepaper released

Public crowdsale

Optionally: tokens can be traded on exchanges

Development continues...

Product launches, you can use your tokens

Most likely need to
register with SEC!

Typically
implemented with
ERC20

https://www.bloomberg.com/news/articles/2018-04-02/crypto-hedge-fund-bubble-begins-to-deflate-as-returns-tumble

https://news.bitcoin.com/46-last-years-icos-failed-already/

https://www.bloomberg.com/news/articles/2018-04-02/crypto-hedge-fund-bubble-begins-to-deflate-as-returns-tumble
https://news.bitcoin.com/46-last-years-icos-failed-already/

Interested in Dissecting the Useless Ethereum Token ?

https://etherscan.io/address/0x27f706edde3aD952EF647Dd67E24e38CD0803DD6#code

https://uetoken.com/

https://ropsten.etherscan.io/token/0xEFeaEF27c453eB96AEa340d03E1724B81973cD61#balances

You can also build your own tETH-backed ERC20
Token:

https://etherscan.io/address/0x27f706edde3aD952EF647Dd67E24e38CD0803DD6%23code
https://uetoken.com/
https://ropsten.etherscan.io/token/0xEFeaEF27c453eB96AEa340d03E1724B81973cD61%23balances

This is how the “Transfer” method look

Function: transfer(address _to, uint256 _value)

MethodID: 0xa9059cbb

[0]: 000000000000000000000000038716c48535f9035d8578fd35500cc5e8582ba8

[1]: 000172

{

"action": {

"callType": "call",

"from": "0x1b326ad348e19ecfd1406c43d3bf7a95547ac55c",

"gas": "0x6e25",

"input": "0xa9059cbb

000000000000000000000000038716c48535f9035d8578fd35500cc5e8582ba8

000172",

"to": "0xefeaef27c453eb96aea340d03e1724b81973cd61",

"value": "0x0"

},

Many ERC20 templates on the Internet

This is a widely adopted standard, and so tons of tools/service will
???“just work”??? if you adhere to ERC20 standard
Beware: any bug for a popular template can jeopardize all smart
contracts/ ICOs of that template !!

http://lmgtfy.com/?q=erc20+token+template

https://github.com/bitfwdcommunity/Issue-your-own-ERC20-
token/blob/master/contracts/erc20_tutorial.sol

http://lmgtfy.com/?q=erc20+token+template
https://github.com/bitfwdcommunity/Issue-your-own-ERC20-token/blob/master/contracts/erc20_tutorial.sol

padding value (little endian, 32 bytes)

Reality: compiled EVM interprets all data as array of 32-byte blocks

var callData = "0"*12 + ($(#userAddr).val()) + toHex($(#amt).val(), 32)

The Short Address Attack on ERC20 token exchanges
Several online exchanges allow you to transfer tokens from a web form

Assumption: All interactions with contracts respects function
interface

function transfer(address _to, uint256 _value) returns (bool success)

20 byte address

0000...0000 AAAAAAAA...AAAAAAAA 00000000...0000000055Example:

Attack: attacker finds a key for an address of the form 0xAAAAAAAA...AAAAA000
and types the 17-byte prefix into the #userAddr field

0000...0000 AAAAAAAA...AAAAA000 00000...0000000055000

For details, refer to:
https://blog.golemproject.net/how-to-find-10m-just-by-reading-the-blockchain/
https://vessenes.com/the-erc20-short-address-attack-explained/
https://www.reddit.com/r/ethereum/comments/6r9nhj/cant_understand_the_erc20_short_address_attack/

https://blog.golemproject.net/how-to-find-10m-just-by-reading-the-blockchain/
https://vessenes.com/the-erc20-short-address-attack-explained/
https://www.reddit.com/r/ethereum/comments/6r9nhj/cant_understand_the_erc20_short_address_attack/

Many ERC20 Tokens are stuck in
Unspendable Contracts

https://www.reddit.com/r/ethereum/6e8y9o/

https://www.reddit.com/r/ethereum/6e8y9o/

Yet another Story on ERC20 Token Thefts
due to “Integer Overflow” bug

Details available at:

https://medium.com/@peckshield/alert-new-batchoverflow-bug-in-multiple-erc20-smart-contracts-cve-2018-
10299-511067db6536

https://news.bitcoin.com/exchanges-suspend-erc20-token-deposits-after-discovery-of-smart-contract-bug/

https://news.bitcoin.com/exchanges-suspend-erc20-token-deposits-after-discovery-of-smart-contract-bug/

Conclusions
! Smart Contract generalizes the use of Blockchain beyond

transferring cryptocurrency among different users
! Ethereum is the 1st general purpose programmable platform

built to enable blockchain-based Smart Contracts
! A Smart Contract platform enables Decentralized Exchange/

Trading of Digital Assets in an Automated manner
! The notion of “Gas” is introduced in Ethereum to side-step

the potential Denial-of-Service attacks due to the “Halting
Problem”.

! A lot of serious Gotchas in the design and implementation of
Solidity/ Smart Contracts due to System/Programming
Language idiosyncrasies + Bugs
" Being a popular (ICO) template does not mean its safe !

! If you want to design/ program Smart Contracts for a living,
you need to know much more and deeply about Smart
Contract Security, Vulnerabilities and Pitfalls

Additional References on
Smart Contract Security and Best Practices

● Decentralized Application Security Project Top 10 of 2018,
https://dasp.co/index.html

● Smart Contract Best Practices,
https://consensys.github.io/smart-contract-best-practices/

● SWC Registry: Smart Contract Weakness Classification and
Test Cases, https://swcregistry.io

Recommended Texts/ References on
Bitcoin, Ethereum and Smart Contracts

● Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Oct
2008, https://bitcoin.org/bitcoin.pdf

● Arvind Narayanan, Joesph Bonneau, Edward Felten, Andrew Miller, Steven
Goldfeder, Bitcoin and Cryptocurrency Technologies - A Comprehensive
Introduction, Princeton University Press, 2016,
https://bitcoinbook.cs.princeton.edu

● Preethi Kasireddy, “How does Ethereum work anway”, Sept 13,
2017,https://www.preethikasireddy.com/post/how-does-ethereum-work-anyway

● Andreas M. Antonopoulos, Mastering Bitcoin, 2nd Edition, Published by
O'Reilly, July 2017, https://github.com/bitcoinbook/bitcoinbook

● The Ethereum White Paper - A Next-Generation Smart Contract and
Decentralized Application Platform,
https://github.com/ethereum/wiki/wiki/White-Paper

● Andreas M. Antonopoulos, Gavin Wood, Mastering Ethereum - Building
Smart Contracts and DApps, Published by O'Reilly, 2018,
https://github.com/ethereumbook/ethereumbook/blob/develop/book.asciidoc

https://bitcoin.org/bitcoin.pdf
https://bitcoinbook.cs.princeton.edu
https://www.preethikasireddy.com/post/how-does-ethereum-work-anyway
https://github.com/bitcoinbook/bitcoinbook
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereumbook/ethereumbook/blob/develop/book.asciidoc

